Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pharmacological blocking of the osteoclastic biocorrosion of surgical stainless steel in vitro

Identifieur interne : 004991 ( Main/Exploration ); précédent : 004990; suivant : 004992

Pharmacological blocking of the osteoclastic biocorrosion of surgical stainless steel in vitro

Auteurs : S. Lionetto [Suisse] ; A. Little [Australie] ; G. Moriceau [France] ; D. Heymann [France] ; M. Decurtins [Suisse] ; M. Plecko [Suisse] ; L. Filgueira [Australie] ; D. Cadosch [Australie, Suisse, Niger]

Source :

RBID : ISTEX:CC22A428DE36F8962CC97E368E5870AB3A176912

Descripteurs français

English descriptors

Abstract

In vitro studies suggest that human osteoclasts (OC) are able to corrode surgical stainless steel 316L (SS). The aim of this study was to investigate whether osteoclastic biocorrosion can be blocked pharmacologically. Human OCs were generated in vitro from peripheral blood monocytic cells (PBMCs) in the presence of OC differentiation cytokines. The osteoclastic viability, differentiation, and resorptive function (on both bone and SS) were assessed using standard colorimetric cell viability assay 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenil)‐2H‐tetrazolium, inner salt (MTS), fluorescence microscopy, tartrate‐resistant acid phosphatase expression (flow cytometry), and scanning electron microscopy. OCs cultured on SS were exposed to nontoxic concentrations of bafilomycin A1, amiloride hydrochloride, or zoledronic acid. The extent of biocorrosion was quantified using atomic emission spectrometry (to measure the concentration of metal ions released into the supernatant) and scanning electron microscopy. PBMCs differentiated into mature and functional OC in the presence of all the drugs used. Osteoclastic resorption of SS was noted with differences in the resorption pattern for all drug treatments. Under the drug treatments, single areas of osteoclastic resorption were larger in size but less abundant when compared with positive controls. None of the drugs used were able to inhibit osteoclastic biocorrosion of SS. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013.

Url:
DOI: 10.1002/jbm.a.34402


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pharmacological blocking of the osteoclastic biocorrosion of surgical stainless steel in vitro</title>
<author>
<name sortKey="Lionetto, S" sort="Lionetto, S" uniqKey="Lionetto S" first="S." last="Lionetto">S. Lionetto</name>
</author>
<author>
<name sortKey="Little, A" sort="Little, A" uniqKey="Little A" first="A." last="Little">A. Little</name>
</author>
<author>
<name sortKey="Moriceau, G" sort="Moriceau, G" uniqKey="Moriceau G" first="G." last="Moriceau">G. Moriceau</name>
</author>
<author>
<name sortKey="Heymann, D" sort="Heymann, D" uniqKey="Heymann D" first="D." last="Heymann">D. Heymann</name>
</author>
<author>
<name sortKey="Decurtins, M" sort="Decurtins, M" uniqKey="Decurtins M" first="M." last="Decurtins">M. Decurtins</name>
</author>
<author>
<name sortKey="Plecko, M" sort="Plecko, M" uniqKey="Plecko M" first="M." last="Plecko">M. Plecko</name>
</author>
<author>
<name sortKey="Filgueira, L" sort="Filgueira, L" uniqKey="Filgueira L" first="L." last="Filgueira">L. Filgueira</name>
</author>
<author>
<name sortKey="Cadosch, D" sort="Cadosch, D" uniqKey="Cadosch D" first="D." last="Cadosch">D. Cadosch</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:CC22A428DE36F8962CC97E368E5870AB3A176912</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/jbm.a.34402</idno>
<idno type="url">https://api.istex.fr/document/CC22A428DE36F8962CC97E368E5870AB3A176912/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002605</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002605</idno>
<idno type="wicri:Area/Istex/Curation">002605</idno>
<idno type="wicri:Area/Istex/Checkpoint">000301</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000301</idno>
<idno type="wicri:doubleKey">1549-3296:2013:Lionetto S:pharmacological:blocking:of</idno>
<idno type="wicri:Area/Main/Merge">004B15</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:13-0158452</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000B09</idno>
<idno type="wicri:Area/PascalFrancis/Curation">005359</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000727</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000727</idno>
<idno type="wicri:doubleKey">1549-3296:2013:Lionetto S:pharmacological:blocking:of</idno>
<idno type="wicri:Area/Main/Merge">004F01</idno>
<idno type="wicri:Area/Main/Curation">004991</idno>
<idno type="wicri:Area/Main/Exploration">004991</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Pharmacological blocking of the osteoclastic biocorrosion of surgical stainless steel
<hi rend="italic">in vitro</hi>
<ref type="note" target="#fn1"></ref>
</title>
<author>
<name sortKey="Lionetto, S" sort="Lionetto, S" uniqKey="Lionetto S" first="S." last="Lionetto">S. Lionetto</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Surgery, Spitalregion Fürstenland Toggenburg</wicri:regionArea>
<wicri:noRegion>Spitalregion Fürstenland Toggenburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Little, A" sort="Little, A" uniqKey="Little A" first="A." last="Little">A. Little</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Anatomy and Human Biology, University of Western Australia</wicri:regionArea>
<wicri:noRegion>University of Western Australia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Moriceau, G" sort="Moriceau, G" uniqKey="Moriceau G" first="G." last="Moriceau">G. Moriceau</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>Physiopathology of Bone Resorption Laboratory, University of Nantes</wicri:regionArea>
<wicri:noRegion>University of Nantes</wicri:noRegion>
<wicri:noRegion>University of Nantes</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Heymann, D" sort="Heymann, D" uniqKey="Heymann D" first="D." last="Heymann">D. Heymann</name>
<affiliation wicri:level="1">
<country xml:lang="fr">France</country>
<wicri:regionArea>Physiopathology of Bone Resorption Laboratory, University of Nantes</wicri:regionArea>
<wicri:noRegion>University of Nantes</wicri:noRegion>
<wicri:noRegion>University of Nantes</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Decurtins, M" sort="Decurtins, M" uniqKey="Decurtins M" first="M." last="Decurtins">M. Decurtins</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Surgery, Kantonsspital Winterthur</wicri:regionArea>
<wicri:noRegion>Kantonsspital Winterthur</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Plecko, M" sort="Plecko, M" uniqKey="Plecko M" first="M." last="Plecko">M. Plecko</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Clinic of Trauma Surgery, University Hospital Zurich, Rämistrasse 100, CH‐8091 Zurich</wicri:regionArea>
<wicri:noRegion>CH‐8091 Zurich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Filgueira, L" sort="Filgueira, L" uniqKey="Filgueira L" first="L." last="Filgueira">L. Filgueira</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Anatomy and Human Biology, University of Western Australia</wicri:regionArea>
<wicri:noRegion>University of Western Australia</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cadosch, D" sort="Cadosch, D" uniqKey="Cadosch D" first="D." last="Cadosch">D. Cadosch</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Anatomy and Human Biology, University of Western Australia</wicri:regionArea>
<wicri:noRegion>University of Western Australia</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Clinic of Trauma Surgery, University Hospital Zurich, Rämistrasse 100, CH‐8091 Zurich</wicri:regionArea>
<wicri:noRegion>CH‐8091 Zurich</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Niger</country>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Correspondence address: School of Anatomy and Human Biology, University of Western Australia</wicri:regionArea>
<wicri:noRegion>University of Western Australia</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Biomedical Materials Research Part A</title>
<title level="j" type="alt">JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A</title>
<idno type="ISSN">1549-3296</idno>
<idno type="eISSN">1552-4965</idno>
<imprint>
<biblScope unit="vol">101A</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="991">991</biblScope>
<biblScope unit="page" to="997">997</biblScope>
<biblScope unit="page-count">7</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2013-04">2013-04</date>
</imprint>
<idno type="ISSN">1549-3296</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1549-3296</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amiloride</term>
<term>Amiloride hydrochloride</term>
<term>Amiloride hydrochloride inhibition</term>
<term>Assay</term>
<term>Atomic emission spectrometry</term>
<term>Becton dickinson biosciences</term>
<term>Biocorrosion</term>
<term>Biomaterial</term>
<term>Biomed mater</term>
<term>Biomedical engineering</term>
<term>Biomedical materials research</term>
<term>Bisphosphonates</term>
<term>Bone cells</term>
<term>Bone resorption</term>
<term>Cellular mechanisms</term>
<term>Chong jian</term>
<term>Clin orthop relat</term>
<term>Colorimetric assays</term>
<term>Control discs</term>
<term>Corrosion</term>
<term>Days incubation</term>
<term>Dentin slides</term>
<term>Dentine</term>
<term>Dentine slices</term>
<term>Dentine slides</term>
<term>Detection limit</term>
<term>Detection limits</term>
<term>Different conditions</term>
<term>Different culture conditions</term>
<term>Different inhibitors</term>
<term>Differentiation cytokines</term>
<term>Disc</term>
<term>Drug concentrations</term>
<term>Drug treatments</term>
<term>Entire surface</term>
<term>Experimental condition</term>
<term>Extracellular environment</term>
<term>Human osteoclasts</term>
<term>Hydrochloride</term>
<term>Implant</term>
<term>In vitro</term>
<term>Inhibitor</term>
<term>Macrolide antibiotic</term>
<term>Metal implants</term>
<term>Metal ion</term>
<term>Metal ions</term>
<term>Metal surface</term>
<term>Mevalonate pathway</term>
<term>Monocyte</term>
<term>Osteoclast</term>
<term>Osteoclastic</term>
<term>Osteoclastic biocorrosion</term>
<term>Osteoclastic bone resorption</term>
<term>Osteoclastic corrosion</term>
<term>Osteoclastic differentiation</term>
<term>Osteoclastic function</term>
<term>Osteoclastic resorption</term>
<term>Osteolytic activity</term>
<term>Pbmcs</term>
<term>Peripheral blood monocytic cells</term>
<term>Potent inhibitor</term>
<term>Rankl</term>
<term>Receptor activator</term>
<term>Representative images</term>
<term>Resorption</term>
<term>Resorption area</term>
<term>Resorption lacunae</term>
<term>Resorption pits</term>
<term>Resorptive</term>
<term>Resorptive function</term>
<term>Scanning electron microscopy</term>
<term>Stainless steel</term>
<term>Standard culture medium</term>
<term>Standard medium</term>
<term>Supernatant</term>
<term>Surface area</term>
<term>Surgery</term>
<term>Trap expression</term>
<term>Treatment</term>
<term>Unprenylated rap1a</term>
<term>Vacuolar proton</term>
<term>Western australia</term>
<term>Western blot analysis</term>
<term>Wiley periodicals</term>
<term>Zoledronic</term>
<term>Zoledronic acid</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Acier inoxydable</term>
<term>Biomatériau</term>
<term>Bisphosphonates</term>
<term>Chirurgie</term>
<term>Corrosion</term>
<term>Génie biomédical</term>
<term>In vitro</term>
<term>Ion métallique</term>
<term>Ostéoclaste</term>
<term>Traitement</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Amiloride</term>
<term>Amiloride hydrochloride</term>
<term>Amiloride hydrochloride inhibition</term>
<term>Assay</term>
<term>Atomic emission spectrometry</term>
<term>Becton dickinson biosciences</term>
<term>Biocorrosion</term>
<term>Biomed mater</term>
<term>Biomedical materials research</term>
<term>Bone cells</term>
<term>Bone resorption</term>
<term>Cellular mechanisms</term>
<term>Chong jian</term>
<term>Clin orthop relat</term>
<term>Colorimetric assays</term>
<term>Control discs</term>
<term>Days incubation</term>
<term>Dentin slides</term>
<term>Dentine</term>
<term>Dentine slices</term>
<term>Dentine slides</term>
<term>Detection limit</term>
<term>Detection limits</term>
<term>Different conditions</term>
<term>Different culture conditions</term>
<term>Different inhibitors</term>
<term>Differentiation cytokines</term>
<term>Disc</term>
<term>Drug concentrations</term>
<term>Drug treatments</term>
<term>Entire surface</term>
<term>Experimental condition</term>
<term>Extracellular environment</term>
<term>Human osteoclasts</term>
<term>Hydrochloride</term>
<term>Implant</term>
<term>Inhibitor</term>
<term>Macrolide antibiotic</term>
<term>Metal implants</term>
<term>Metal ions</term>
<term>Metal surface</term>
<term>Mevalonate pathway</term>
<term>Monocyte</term>
<term>Osteoclast</term>
<term>Osteoclastic</term>
<term>Osteoclastic biocorrosion</term>
<term>Osteoclastic bone resorption</term>
<term>Osteoclastic corrosion</term>
<term>Osteoclastic differentiation</term>
<term>Osteoclastic function</term>
<term>Osteoclastic resorption</term>
<term>Osteolytic activity</term>
<term>Pbmcs</term>
<term>Peripheral blood monocytic cells</term>
<term>Potent inhibitor</term>
<term>Rankl</term>
<term>Receptor activator</term>
<term>Representative images</term>
<term>Resorption</term>
<term>Resorption area</term>
<term>Resorption lacunae</term>
<term>Resorption pits</term>
<term>Resorptive</term>
<term>Resorptive function</term>
<term>Scanning electron microscopy</term>
<term>Stainless steel</term>
<term>Standard culture medium</term>
<term>Standard medium</term>
<term>Supernatant</term>
<term>Surface area</term>
<term>Trap expression</term>
<term>Unprenylated rap1a</term>
<term>Vacuolar proton</term>
<term>Western australia</term>
<term>Western blot analysis</term>
<term>Wiley periodicals</term>
<term>Zoledronic</term>
<term>Zoledronic acid</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Biomatériau</term>
<term>Chirurgie</term>
<term>Corrosion</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In vitro studies suggest that human osteoclasts (OC) are able to corrode surgical stainless steel 316L (SS). The aim of this study was to investigate whether osteoclastic biocorrosion can be blocked pharmacologically. Human OCs were generated in vitro from peripheral blood monocytic cells (PBMCs) in the presence of OC differentiation cytokines. The osteoclastic viability, differentiation, and resorptive function (on both bone and SS) were assessed using standard colorimetric cell viability assay 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphenyl)‐2‐(4‐sulfophenil)‐2H‐tetrazolium, inner salt (MTS), fluorescence microscopy, tartrate‐resistant acid phosphatase expression (flow cytometry), and scanning electron microscopy. OCs cultured on SS were exposed to nontoxic concentrations of bafilomycin A1, amiloride hydrochloride, or zoledronic acid. The extent of biocorrosion was quantified using atomic emission spectrometry (to measure the concentration of metal ions released into the supernatant) and scanning electron microscopy. PBMCs differentiated into mature and functional OC in the presence of all the drugs used. Osteoclastic resorption of SS was noted with differences in the resorption pattern for all drug treatments. Under the drug treatments, single areas of osteoclastic resorption were larger in size but less abundant when compared with positive controls. None of the drugs used were able to inhibit osteoclastic biocorrosion of SS. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
<li>Niger</li>
<li>Suisse</li>
</country>
</list>
<tree>
<country name="Suisse">
<noRegion>
<name sortKey="Lionetto, S" sort="Lionetto, S" uniqKey="Lionetto S" first="S." last="Lionetto">S. Lionetto</name>
</noRegion>
<name sortKey="Cadosch, D" sort="Cadosch, D" uniqKey="Cadosch D" first="D." last="Cadosch">D. Cadosch</name>
<name sortKey="Decurtins, M" sort="Decurtins, M" uniqKey="Decurtins M" first="M." last="Decurtins">M. Decurtins</name>
<name sortKey="Plecko, M" sort="Plecko, M" uniqKey="Plecko M" first="M." last="Plecko">M. Plecko</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Little, A" sort="Little, A" uniqKey="Little A" first="A." last="Little">A. Little</name>
</noRegion>
<name sortKey="Cadosch, D" sort="Cadosch, D" uniqKey="Cadosch D" first="D." last="Cadosch">D. Cadosch</name>
<name sortKey="Cadosch, D" sort="Cadosch, D" uniqKey="Cadosch D" first="D." last="Cadosch">D. Cadosch</name>
<name sortKey="Filgueira, L" sort="Filgueira, L" uniqKey="Filgueira L" first="L." last="Filgueira">L. Filgueira</name>
</country>
<country name="France">
<noRegion>
<name sortKey="Moriceau, G" sort="Moriceau, G" uniqKey="Moriceau G" first="G." last="Moriceau">G. Moriceau</name>
</noRegion>
<name sortKey="Heymann, D" sort="Heymann, D" uniqKey="Heymann D" first="D." last="Heymann">D. Heymann</name>
</country>
<country name="Niger">
<noRegion>
<name sortKey="Cadosch, D" sort="Cadosch, D" uniqKey="Cadosch D" first="D." last="Cadosch">D. Cadosch</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004991 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004991 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:CC22A428DE36F8962CC97E368E5870AB3A176912
   |texte=   Pharmacological blocking of the osteoclastic biocorrosion of surgical stainless steel in vitro
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024